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1. Introduction 

The systems carrying electric charges in the form of plasma are widespread in 

nature. Various US Army-related applications deal with different plasmas. We do 

not dwell on any particular applications since we have analyzed theoretical issues 

equally relevant for any of those practical applications. 

Basically, we address the general problems related to thermodynamics of plasma, 

including equilibrium and stability conditions for macroscopic systems containing 

components in a plasma state. Of course, these general issues have been addressed 

and revised in tens of classical textbooks, and certainly they will be addressed and 

revised in hundreds of textbooks to come. This keeps happening for 2 main 

reasons. First, the fundamentals of any discipline are full of striking 

inconsistences and contradictions. These striking contradictions will never be 

fully avoided, although they stay dormant, sometimes, for decades and even 

centuries. Second, the number of promising and useful applications keeps 

growing and requires permanent revisions of fundamentals. 

Thus, we do not address all fundamental problems and contradictions; this is 

simply impossible. Instead, we discuss the bare minimum of the thermodynamical 

tools—only those tools that are absolutely unavoidable when dealing with the 

problems of equilibrium and stability of systems containing gaseous plasmas. 

There are 2 different approaches in thermodynamics, each having its own 

advantages and disadvantages. Josiah Willard Gibbs made the major contributions 

to each of them in his seminal treatises.1,2 Current textbooks and monograph 

presentations of the thermodynamics of plasma mostly follow the Gibbs2 basic 

principles of statistical thermodynamics and their subsequent development. 

Landau and Lifshitz3 summarize those developments. 

The approach of Gibbs,1 based on the concept of heterogeneous systems and 

usage of variational principles, did not get enough attention. Here we apply the 

Gibbs variational method (as we understand it) for the analysis of the simplest 

possible systems containing ionized gases. 

2. Gibbs Method in the Integral Form 

As per the Gibbs general methodology, based on the concept of heterogeneous 

systems, we have to choose the energy and entropy functionals and specify the 

macroscopic degrees of freedom for the system. Consider a closed vessel 

containing a gas or liquid, the material particles of which carry charges. 
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Typically, the net charge of the system is close to zero. However, for the sake of 

brevity, we assume that all the charges are the same; for instance, electrons or 

negatively charged ions. 

We use the Eulerian approach to describe liquid continuum media. Fortunately, 

the Eulerian description is the most convenient when dealing with both the 

thermodynamics of liquids and gases and also with electromagnetism. 

2.1 The Functional for One-Component Plasma 

Let   be the volume inside the closed vessel. Let  z  be the mass densities per 

unit volume of the gas (liquid) under study. Let   be the charge density per unit 

mass. The charge density q  per unit volume, then, is given by the relationship 

 q  . (1) 

Let M  and Q  be the total mass and charge of the liquid, respectively. They are 

expressed by the following integrals over the domain occupied by the charged 

gaseous substance: 

    ,M d z Q d q z M 
 

      . (2) 

Let the  z  be the entropy density per unit mass of the electric liquid, whereas 

S  is the total entropy of the system; then we get  

  S d z


  . (3) 

Let the  e z  be the spatial distribution of the internal energy density per unit 

mass of the electric liquid, whereas U  is the total internal energy of the system, 

as follows:  

  U d e z


  . (4) 

Similarly, we introduce be the free energy density  z  per unit mass of the 

electric liquid, whereas F  is the total internal energy of the system and other 

thermodynamic functions. 

The thermodynamics of the system will be completely defined when the internal 

energy density e  is given as a function of the mass density   and the mass 

entropy density  , as follows: 
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  ,e e   . (5) 

Given the function  , ,e    there is no need to separately choose any additional 

equations of state (EOSs); like, for instance, the pressure p  or the absolute 

temperature T  as functions of 2 macroscopic thermodynamic parameters. This 

information is already contained in the function  ,e    and can be extracted 

from this function with the help of the formula 

  
 

 
 2

, ,
, , ,

e e
p T

   
    

 

 
 

 
, (6) 

but not the other way around. Given the function  ,p   we cannot recover 

from it the internal energy density function  , .e    That is why the function 

 ,e    can be coined a complete EoS, whereas  ,p    or  ,T    are 

incomplete EoSs. So, there are several incomplete EoSs, none of which contains 

as much information as  , .e    However, several incomplete EoSs can contain 

altogether as much information as one complete EoS. The advantage of the 

incomplete EoSs is implied by the fact that they can be more easily extracted from 

physical experiments. 

One can ask, “Is there only one complete EoS for given liquid substance?” The 

answer is negative. In particular, the free-energy density function  ,T   

contains as much information as the complete EoS function  , .e    Thus, 

 ,T   is also a complete EOS on its own right. 

The statistical thermodynamics provides a theoretical procedure allowing us to 

extract the complete EoS  ,T   from data related to the spectrum of existing 

energy levels of the system. Calculation of the EoS still relies on an additional 

hypothesis that is not that easy to justify. Fortunately, some of the important 

qualitative facts can be extracted without full knowledge of the spectra. 

The macroscopic Gibbs approach, based on the concept of heterogeneous 

systems, does not suggest any procedure for calculating the complete EoS from 

theoretical reasoning. Basically, with this approach the EoS should be extracted 

from specially designed experiments dictated by the basic thermodynamic 

principles, physical intuition, or a combination. 

The peculiarity of the heterogeneous systems with plasma components consists in 

the necessity of taking into account the nonlocal electrostatic energy as an 

essential addition to the classical internal energy. 

The classical, local, and additive internal energy can be presented in the form of a 

single integral over the domain  , occupied by the substance under study. At the 
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same time, the electrostatic energy is different; it is nonadditive and nonlocal. 

Often it is presented in the form of a double integral over the domain occupied by 

the charged substance. The total electrostatic energy 
elecE  of the system we 

postulate in the following form of the integral, 

 
       21

2 2
elec

q z q z z z
E d d d d

z z z z

 
 

 

 

   

     
 

    , (7) 

with a singular core (i.e., within the domain   the integrand in Eq. 7 approaches 

infinity). 

The singularity of the integrand creates a variety of technical difficulties. To 

avoid them the electrostatic energy can also be presented in the form of a single 

integral of the electrostatic field  
21
,

8
elec

Space

E d E z


   without any singular core. 

  
21
,

8
elec

Space

E d E z


   (8) 

but the integral now spans over the whole space, not just part of it, occupied by 

the ionized substance. The field components  iE z  are the gradients of the 

electrostatic potential  z . 

  i iE z   . (9) 

The theoretical electostatics were built based on the analogy with the earlier 

developed theory of self-gravitating celestial bodies. Still, many models of 

electrostatic systems are almost the same as the models of the systems with self-

gravitation. For instance, the total gravitational energy gravE  of a self-gravitating 

body is typically postulated in the form 

 
   

2
grav

z zG
E d d

z z

  





 

   


  . (10) 

We see that the electrostatic and gravitational energy are very similar but differ by 

the sign. The difference in the signs makes the physics of self-gravitating and self-

repelling electrostatic systems completely different, although the mathematical 

tools used in both disciplines are almost identical. 
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In the following, we neglect the gravitational energy. We assume that the total 

energy of the system 
totE  comprises the total internal energy internal 

intE and 

total electrostatic energy given by the integrals 

  
   2

int ,
2

tot elec

z z
E E E d e d d

z z

 
  







  

      


   . (11) 

2.2 Basic Gibbs Variational Principle 

Following Gibbs, we postulate that the thermodynamic and mechanical 

parameters of the equilibrium configuration deliver the minimum (more precisely, 

stationary value) to the total energy ,totE  given by Eq. 11. When talking about 

minimum, we must specify the mechanical and thermodynamical degrees of 

freedom of the system under consideration. Quite often, it is done by specifying 

allowable infinitesimal variations of certain parameters. We postulated that for 

our system the virtual variation of the mass density   and entropy   must 

keep the following integral amounts fixed: 

   ,d z M


   (12) 

and 

  d z S


  . (13) 

Using the standard method of the Lagrange indefinite multipliers, we arrive at the 

following unconditional variational problem for the functional  : 

  
   2

,
2

z z
d e d d

z z

 
   







  

         


   , (14) 

where   and   are the indefinite Lagrange multipliers. 

2.3 First Variation and the Equilibrium Equations 

The first variation of the functional   reads  
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 

 

 

2 z

e z z
e d

d

e







  


 











  
          

 
 

 . (15) 

Indeed, the functional   can be presented as sum of 2 terms, as follows: 

 I I    , (16) 

where  

  ,I d e   



       (17) 

and 

 
   2

2

z z
I d d

z z

 




 

 

  


  . (18) 

Varying the expressions Eqs. 17 and 18, we get, respectively, 

     I d e e
     



      
   (19) 

and 

  
 

2
z

I d z d
z z


  





 

 

  


  . (20) 

The denominator 2  in the relationship Eq. 20 disappeared because   in the 

integrand of Eq. 18 appears twice as  z  and  z  . 

Adding the relationships Eqs. 19 and 20 we arrive at the required relationship 

Eq. 15 for the first variation of .  

Separating the independent variations   and   in Eq. 15, we arrive at the 

following conditions of the bulk equilibrium: 

  
 

2
z

e d
z z




  









    


  (21) 

and  
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 e   . (22) 

Thus, we arrive at the system of 4 equations describing equilibrium 

configurations: 3 integral Eqs. 12, 13, and 21, and 1 algebraic Eq. 22, with respect 

to 4 unknowns: 2 spatial function   ,z   ,z  and 2 unknown constants   and 

.  No boundary conditions are necessary for this system. 

Let us introduce an electrostatic potential   ,z  defined as 

  
 z

z d
z z


 









 


 . (23) 

We then can rewrite the relationship Eq. 21 as 

    , ,e e           . (24) 

Using thermodynamic identities, Eq. 6, we can rewrite the relationship Eq. 24 as  

  ,
p

e T   


     . (25) 

The relationship Eq. 25 can also be rewritten in terms of the free energy density 

e T    as 

 
p

 


    . (26) 

The relationships Eqs. 25 and 26 are equivalent from the standpoint of 

mathematics; however, depending on circumstances, one or another form appears 

to be more technically convenient. 

In the absence of electric field the relationship Eq. 25 implies 

 
p

e T


    . (27) 

The combination on the left-hand side of Eq. 27 is the specific value (per unit 

mass) of the so-called Gibbs thermodynamic potential, or the Grand 

thermodynamic potential of one-component liquid substance. For heterogeneous 

systems containing 2 one-component phases, this quantity also plays the role of 

the chemical potential μ of the phases. In other words, the full equilibrium in the 

heterogeneous system, containing 2 one-component phases—not only the 

pressures and temperatures of the phases—should be equal  1 2 1 2,p p T T  , but 
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the chemical potentials of the phases  1 2   should also be equal. We do not 

proceed with this discussion in this paper; it will be done later. The interested 

reader should refer to the Grinfeld monograph.4 

The relationship Eq. 25 shows that when dealing with electrostatic forces the 

additional term ,  responsible for electrostatic interaction, should be included in 

the equilibrium equation and in the chemical potential .  This fact was known to 

Gibbs,1 who established it from a different, less formal, and more intuitive 

reasoning. The advantage of the reasoning, presented here, is that it allows us to 

proceed with calculation of the second variation and, thus, to get the toll for 

analysis of stability conditions and not just the conditions of equilibrium. This is 

something that Gibbs was not able to accomplish in his time. 

3. Second Variation and Stability Conditions 

The main instrument in investigation of stability of heterogeneous systems is the 

second energy variation. If the second variation is negative for some allowable 

variations of the thermodynamics degrees of freedom, we can conclude that the 

equilibrium configuration under study is unstable. 

By varying the relationship Eq. 15 one more time in the vicinity of equilibrium 

configuration, we arrive at the following formula of the second variation:  

 

   

   

2 2 2

2

, 2a h d A a A ah A h

a z a z
d d

z z

  











 

     

 




 
, (28) 

where 

 
   

   

, ,

, , ,

a z h z

A e A e A e    

 

  

 

  
. (29) 

For stability, the integral quadratic form  2 ,a h   should be nonnegative for the 

arbitrary variations satisfying the linear bulk constraints. 

    0, 0d a z d h z
 

     . (30) 
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3.1 Spectral Analysis of the Second Variation 

Consider the minimum of the second variation Eq. 28 under the isoperimetric 

constraints of Eq. 30 and the normalization condition 

  2 1.d a z


   (31) 

As before, we arrive at the unconditional minimization of the functional 

      

2 2

2

2

, a z a z

z z

A a A ah A h

a h d
d a h a

  

  






 

   
   
     
  

 . (32) 

In the relationship Eq. 32, , ,  and   are the indefinite multipliers associated 

with the constraints Eqs. 30 and 31. 

For the first variation of this functional we get  

  
   

 

1
2

1
2

1
,

2

a z

z z
A a A h d a

a h d

A a A h h

 

 

  


 











  
            

  
 

 . (33) 

Thus, we arrive at the nonuniform linear bulk equations 

  
  1

2

a z
A a A h d

z z
  









    


  (34) 

and  

 
1

2
A a A h    . (35) 

We arrived at 5 equations, 2 Eqs. 30, plus Eqs. 31, 34, and 35, and 5 unknowns, 

, , , , .a h     Consider a solution of this system to be 

 , , , ,anda a h h           , (36) 

where the superscript “ ” refers to the equilibrium values of the corresponding 

parameters. 

So, by definition, we get the following relationships: 
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  2 1,d a z


   (37) 

    0, 0,d h z d a z
 

      (38) 

  
  1

2

a z
A a A h d

z z
  









    


  , (39) 

and 

 
1

2
A a A h     . (40) 

Let us consider Eqs. 38, 39, and 40 as a system of 4 linear equations with 4 

unknowns , , , and .a h    This system is not only near but also uniform. 

Therefore, it always has a trivial solution 0.a h       This solution is of no 

interest to us since in view of Eq. 37 we need a solution oft 0.a   So, we have to 

have a situation in which the system of Eqs. 17a, 18, 19 has multiple solutions. 

This is possible only for some special values of γ. We call them spectral values. 

In the following it is evident that the spectral values play a special role in the 

analysis of stability of equilibrium  

For a spectral value  , let us calculate the corresponding no-vanishing values of 

the unknowns , , , and .a h    Let us multiply Eq. 39 by ,a  Eq. 40 by h , and 

integrate the resulting relationships over the volume .  Then, using Eq. 17, we 

get the relationships 

    
   

2
a z a z

d A a z d A h a z d d
z z

  







   

      


     (41) 

and 

 2 0e ed A a h d A h 

 

     . (42) 

Adding the relationships Eqs. 41 and 42, we get the relationship 

  
   

2 22
a z a z

d A a A h a A h d d
z z

   







  

      


   . (43) 
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Comparing Eq. 28 with Eq. 43, we get 

  2 ,a h   . (44) 

In words, the relationship Eq. 44 says that the spectral values   and the 

associated nontrivial solutions of the system Eqs. 38, 39, and 40 are equal to the 

extrema of the second energy variation of the system. Thus, we get the following 

necessary conditions of stability. For stability all the solutions of the system 

Eqs. 29, 31, 34, and 35, all the values of   must be nonnegative. 

We can reformulate this statement as the following:  

For stability, all the spectral values   of the linear uniform system 

    0, 0,d a z d h z
 

      (45) 

  
  1

0
2

a z
A a A h d

z z
  









     


 , (46) 

and 

 
1

0
2

A a A h     , (47) 

with respect to the unknowns , , , anda h   , must be nonnegative. In the 

following we will be calling this statement the Stability Principle of Nonnegative 

Spectrum. 

3.2 Thermodynamic Inequalities 

The problem of stability and the stability principle of nonnegative spectrum has 

an immediate relation to the problem of thermodynamic inequalities. For the 

analysis of thermodynamical inequalities it is convenient to rewrite Eq. 46 as the 

following pair of equations: 

  
1

0
2

A a A h         (48) 

 4 0i

i a     . (49) 

Consider a shortwave spectrum of the system Eqs. 47–49 for which 
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 0, , ,
m m m

m m mik z ik z ik z
a Ae h He Je       . (50) 

Then, Eqs. 47–49 imply the following system: 

 0A A A H   , (51) 

   0A A A H J     , (52) 

and 

 
2

4 0k J A    . (53) 

By eliminating the scalars H  and J  in Eqs. 51–53, we arrive at the single linear 

uniform equation 

 

2
2

4 0
A

A k A
A







 
 

     
 

 (54) 

with respect to the remaining constant .A   

Equation 54 always has the following trivial solution: 

 0A . (55) 

The nontrivial solutions exist only when the expression on the brackets in Eq. 54 

vanishes. This obvious fact leads us to the following formula for the spectral 

values :   

 

2
2

4
A A A

k
A

  



 


  . (56) 

Thus, we arrive at the inequality 

 

2
2

4 0

e e e

e

A A A
k

A

  






  . (57) 

If, instead of the normalization condition Eq. 31, we use  

  2 1,d h z


   (58) 

then instead of the system Eqs. 51–53, we get the system 
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   0A A A H     , (59) 

 0A A A H J    , (60) 

and 

 
2

4 0k J A   . (61) 

System Eqs. 59–61 leads us to somewhat different spectral values of λ.  

 

2
2

2

4

4

A A A k A

A k

   












 




. (62) 

Thus, we arrive at the thermodynamic inequality 

 

2
2

2

4
0

4

A A A k A

A k

   











 




. (63) 

At last, let us consider the case of the normalization condition  

  2 2 2 1d a h


   . (64) 

In this case, we arrive at the spectral system 

  2 0A A A H      , (65) 

   0A A A H J     , (66) 

and 

 
2

4 0k J A   , (67) 

which can be rewritten in the following matrix form: 
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2

2

0 0

1 0

0
4 0 1

A A A

A A H

J
k

 

 

 






 
     

     
    
          

. (68) 

At ,k   the Eq. 68 reads 

 

2 0 0

1 0

0 0 1 0

A A A

A A H

J

 

 

 



     
     

      
          

, (69) 

leading to the spectrum (secular) equation 

 

2 2

2

2 2
0

A A A A A    
 

 

 
   . (70) 

Equation 71 has the following discriminant :   

 
   

 

2
4 2 2 2

2
2 2 2

4

4

A A A A A

A A A

    

  

  

 

     

 

. (71) 

Obviously, the discriminant   is always positive, and therefore the spectrum 

values   are real. They will be nonnegative provided the following relationships 

are satisfied: 

 
2 0A A A     (72) 

and 

 
2 0A A   . (73) 

Since   in the inequality Eq. 73 can be an arbitrary real constant, the positiveness 

of the Eigenvalues   implies 2 independent inequalities: 

 0, 0e eA A   . (74) 

Thus, in the asymptotics k  we arrive at the 3 classical thermodynamic 

inequalities of Eqs. 72, 73, and 74. 
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4. Conclusion 

We established general equations allowing analysis of the equilibrium 

configurations of the systems containing electrically charged constituents. For the 

sake of simplicity, technical transparency, and brevity, we limited ourselves to the 

systems containing charges of a one sign. Our approach was based on the 

variational principles of Gibbs, which are, in turn, based on the concept of 

heterogeneous systems. The deduction of the equation of equilibrium is based on 

the calculation of the first energy variation of the functionals with isoperimetric 

constraints. We arrived at the system of 4 equations describing equilibrium 

configurations: 3 integral Eqs. 12, 13, and 21 and one algebraic Eq. 22 with 

respect to 4 unknown: 2 spatial functions   ,z    ,z  and 2 unknown 

constants,  and .  No boundary conditions are necessary for this system. 

We then established the necessary conditions of thermodynamic stability of the 

corresponding equilibrium configuration. Our approach is based on the derivation 

and analysis of the second variation, which is given by the relationship Eq. 28, 

which uses the notation Eq. 29. The second variation appears in the quadratic 

integral form, which should be analyzed in conjunction with 2 linear integral 

constraints of the isoperimetric type in Eq. 30. 

We demonstrated how the concept of stability can be applied to the classical 

problem of thermodynamic inequalities. We also established the novel 

thermodynamic inequalities Eqs. 57 and 63, which generalize the classical 

thermodynamic inequalities of Gibbs for the charges liquids or gases. 
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